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LETTER TO THE EDITOR 

Remarks on a recent theorem about conserved quantities 

M Lutzky 
10111 Quinby St, Silver Spring, Maryland 20901, USA 

Received 26 June 1995 

Abstract. A recently proved theorem i s  used to derive a conserved qwti ly associated with 
a velocity-dependent symmehy for Lagrangian systems. In addition, a genenJiZation of the 
theorem is piven. 

A theorem regarding conserved quantities for second-order dynamical systems has recently 
been given by Hojman 111, and subsequently generalized by Gonz6Iez-Gascbn [2], using 
geomemc techniques; expressed in coordinates the result may be stated as follows. Let the 
functions q ( q ,  q ,  t )  determine a symmetry generator E = q& + rj& for the equations of 
motion q j  = q ( q ,  4, t); if a function h(q, q ,  t )  can be found such that the quantity 

vanishes, then a constant of the motion is given by 

(we use the overdot to denote the total time derivative along a trajectory, 4 = $ = 

In this letter we apply the theorem to derive a certain conserved quantity for Lagrangian 
systems; this conserved quantity is associated with the presence of a vefocity-dependent 
(non-point) symmetry. In addition, we generalize the theorem by showing that it is sufficient 
for R to be an invariant of the symmetry group in order for Q to be conserved. 

The theorem referred to above holds whether or not the equations of motion are derivable 
from a Lagrangian. However, in the event that there does exist a Lagrangian L(q,  4, t )  for 
the system q, = cui, it can be shown quite generally that 

g + $4, + $a1.) 

aa, d 
a41 dt 
-+--(lnD)=O 

where D is the determinant of the matrix whose elements are a2L/aqkaqj. We may choose 
1 = D, and therefore the condition S2 = 0 can always be satisfied for a Lagrangian system, 
leadiig automatically to the conserved quantity 

The particular interest of this result lies in the fact that the I may depend on the velocities 
41; thus 4 is associated with a non-point symmetry. Should the be independent of the 
velocities (in which case they determine apoint symmetry) we find that 
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and the conserved quantity reduces to 
a vl @ = 2- 4- E[ln D). 
as1 

This conserved quantity, related to point symmetries, is well known [3], and has been 
derived using the fact that if E is a point symmetry, then the Lagrangian L’ = E ( L )  leads 
to the same equations of motion as L. However, the conserved quantity @ cannot be derived 
in this way, since it is not generally true that L’ = E(L)  and L are equivalent Lagrangians 
if E is a velocity-dependent symmetry. 

Finally, we prove a generalization of the theorem of [Z] by showing that it is sufficient 
that a be an invariant of the symmetry group in order for 6 to be conserved; that is, we 
show that E I S )  = 0 implies $ = 0. This is accomplished by explicitly differentiating @ to 
demonstrate that $ = E(Q2). The calculation is greatly simplified by the following easily 
proven identifies ( j ( q ,  4, I) is arbitrary): 

this we can show that if E is a symmetry, then 

~~ 

Differentiating 6 we obtain 

@ = E  -1nh +- -+- Id4 1 d4 E: ::I 
where we have used (4). 

Using (1) and (2) we can show that 

(6) 
a t l  ae.” aa, avs aam 

Furthermore, equation (3) allows us to show that E ( % )  equals the right-hand side of (6), 
so that we may put 

Using (7) in (5) then yields 

which is the desired result, 
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