Remarks on a recent theorem about conserved quantities

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 28 L637
(http://iopscience.iop.org/0305-4470/28/24/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 00:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Remarks on a recent theorem about conserved quantities

M Lutzky
10111 Quinby St, Silver Spring, Maryland 20901, USA

Received 26 June 1995

Abstract

A recently proved theorem is used to derive a conserved quantity associated with a velocity-dependent symmetry for Lagrangian systems. In addition, a generalization of the theorem is given.

A theorem regarding conserved quantities for second-order dynamical systems has recently been given by Hojman [1], and subsequently generalized by González-Gascón [2], using geometric techniques; expressed in coordinates the result may be stated as follows. Let the functions $\eta_{l}(q, \dot{q}, t)$ determine a symmetry generator $E=\eta_{l} \frac{\partial}{\partial q_{I}}+\dot{\eta}_{l} \frac{\partial}{\partial \dot{q}_{l}}$ for the equations of motion $\ddot{q}_{l}=\alpha_{l}(q, \dot{q}, t)$; if a function $\lambda(q, \dot{q}, t)$ can be found such that the quantity

$$
\Omega=\frac{\partial \alpha_{l}}{\partial \dot{q}_{l}}+\frac{\mathrm{d}}{\mathrm{~d} t} \ln \lambda
$$

vanishes, then a constant of the motion is given by

$$
\phi=E(\ln \lambda)+\frac{\partial \eta_{l}}{\partial q_{l}}+\frac{\partial \dot{\eta}_{l}}{\partial \dot{q}_{l}} \quad \dot{\phi}=0
$$

(We use the overdot to denote the total time derivative along a trajectory, $\dot{\phi} \equiv \frac{\mathrm{d} \phi}{\mathrm{dt}}=$ $\left.\frac{\partial \phi}{\partial t}+\frac{\partial \phi}{\partial q_{l}} \dot{q}_{t}+\frac{\partial \phi}{\partial \dot{q}_{t}} \alpha_{t}.\right)$

In this letter we apply the theorem to derive a certain conserved quantity for Lagrangian systems; this conserved quantity is associated with the presence of a velocity-dependent (non-point) symmetry. In addition, we generalize the theorem by showing that it is sufficient for Ω to be an invariant of the symmetry group in order for ϕ to be conserved.

The theorem referred to above holds whether or not the equations of motion are derivable from a Lagrangian. However, in the event that there does exist a Lagrangian $L(q, \dot{q}, t)$ for the system $\ddot{q}_{l}=\alpha_{l}$, it can be shown quite generally that

$$
\frac{\partial \alpha_{l}}{\partial \dot{q}_{I}}+\frac{\mathrm{d}}{\mathrm{~d} t}(\ln D)=0
$$

where D is the determinant of the matrix whose elements are $\partial^{2} L / \partial \dot{q}_{k} \partial \dot{q}_{l}$. We may choose $\lambda=D$, and therefore the condition $\Omega=0$ can always be satisfied for a Lagrangian system, leading automatically to the conserved quantity

$$
\phi=\frac{\partial \eta_{l}}{\partial q_{l}}+\frac{\partial \dot{\eta}_{l}}{\partial \dot{q}_{l}}+E\{\ln D\}
$$

The particular interest of this result lies in the fact that the η_{l} may depend on the velocities \dot{q}_{l}; thus ϕ is associated with a non-point symmetry. Should the η_{l} be independent of the velocities (in which case they determine a point symmetry) we find that

$$
\frac{\partial \dot{\eta}_{l}}{\partial \dot{q}_{l}}=\frac{\partial \eta_{l}}{\partial q_{l}}
$$

and the conserved quantity reduces to

$$
\psi=2 \frac{\partial \eta_{l}}{\partial q_{l}}+E\{\ln D\} .
$$

This conserved quantity, related to point symmetries, is well known [3], and has been derived using the fact that if E is a point symmetry, then the Lagrangian $L^{\prime}=E(L)$ leads to the same equations of motion as L. However, the conserved quantity ϕ cannot be derived in this way, since it is not generally true that $L^{\prime}=E(L)$ and L are equivalent Lagrangians if E is a velocity-dependent symmetry.

Finally, we prove a generalization of the theorem of [2] by showing that it is sufficient that Ω be an invariant of the symmetry group in order for ϕ to be conserved; that is, we show that $E\{\Omega\}=0$ implies $\dot{\phi}=0$. This is accomplished by explicitly differentiating ϕ to demonstrate that $\dot{\phi}=E\{\Omega\}$. The calculation is greatly simplified by the following easily proven identifies ($f(q, \dot{q}, t)$ is arbitrary):

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left\{\frac{\partial f}{\partial \dot{q}_{l}}\right\}=\frac{\partial \dot{f}}{\partial \dot{q}_{l}}-\frac{\partial f}{\partial q_{l}}=\frac{\partial f}{\partial \dot{q}_{m}} \frac{\partial \alpha_{m}}{\partial \dot{q}_{l}} \tag{1}\\
& \frac{\mathrm{~d}}{\mathrm{~d} t}\left\{\frac{\partial f}{\partial q_{l}}\right\}=\frac{\partial \dot{f}}{\partial q_{l}}-\frac{\partial f}{\partial \dot{q}_{m}} \frac{\partial \alpha_{m}}{\partial q_{l}} \tag{2}\\
& E\left\{\frac{\partial f}{\partial \dot{q}_{l}}\right\}=\frac{\partial}{\partial \dot{q}_{l}} E\{f\}-\frac{\partial \eta_{k}}{\partial \dot{q}_{l}} \frac{\partial f}{\partial q_{k}}-\frac{\partial \dot{\eta}_{k}}{\partial \dot{\dot{q}}_{l}} \frac{\partial f}{\partial \dot{q}_{k}} . \tag{3}
\end{align*}
$$

The condition that the η_{l} define a symmetry [4] for $\ddot{q}_{l}=\alpha_{l}$ is given by $\ddot{\eta}_{l}=E\left\{\alpha_{l}\right\}$; using this we can show that if E is a symmetry, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} E\{f\}=E\{\dot{f}\} . \tag{4}
\end{equation*}
$$

Differentiating ϕ we obtain

$$
\begin{equation*}
\dot{\phi}=E\left\{\frac{\mathrm{~d}}{\mathrm{~d} t} \ln \lambda\right\}+\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\frac{\partial \eta_{l}}{\partial q_{l}}+\frac{\partial \dot{\eta}_{l}}{\partial \dot{q}_{l}}\right\} \tag{5}
\end{equation*}
$$

where we have used (4).
Using (1) and (2) we can show that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\frac{\partial \eta_{l}}{\partial q_{l}}+\frac{\partial \dot{\eta}_{l}}{\partial \dot{q}_{l}}\right\}=\frac{\partial \ddot{\eta}_{l}}{\partial \dot{q}_{l}}-\frac{\partial \dot{\eta}_{s}}{\partial \dot{q}_{m}} \frac{\partial \alpha_{m}}{\partial \dot{q}_{s}}-\frac{\partial \eta_{s}}{\partial \dot{q}_{m}} \frac{\partial \alpha_{m}}{\partial q_{s}} . \tag{6}
\end{equation*}
$$

Furthermore, equation (3) allows us to show that $E\left\{\frac{\partial \alpha_{1}}{\partial \dot{q}_{t}}\right\}$ equals the right-hand side of (6), so that we may put

$$
\begin{equation*}
E\left\{\frac{\partial \alpha_{l}}{\partial \dot{q}_{l}}\right\}=\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\frac{\partial \eta_{l}}{\partial q_{l}}+\frac{\partial \dot{m}_{l}}{\partial \dot{q}_{l}}\right\} \tag{7}
\end{equation*}
$$

Using (7) in (5) then yields

$$
\dot{\phi}=E\left\{\frac{\partial \alpha_{l}}{\partial \dot{q}_{l}}+\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{In} \lambda\right\}
$$

which is the desired result.

References

[1] Hojman S A 1992 J. Phys. A: Math. Gen. 25291
[2] González-Gascon F 1994 J. Phys. A: Math. Gen. 27 L59
[3] Lutzky M 1979 Phys. Lett. 75A 8
[4] Lutzky M 1979 J. Phys. A: Math. Gen. 12973

